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Abstract

Fourier synthesized ray solutions are an effective way to
model mountain waves, producing fast high-resolutionehre
dimensional forecasts. Here this method is extended to in-
clude tunneling effects, i.e. the penetration of mountaaves
through an evenescent region bounded above and below by turn
ing points. Tunneling effects are especially important néad

jets. To overcome the divergence of ray theory at the turning
points, without resorting to special functions, the rayutioh

is linearly interpolated across the turning point regioncon-
parison of the ray solution with a mesoscale model indicdes
importance of including a wind curvature term in the ray gnal
sis.

Introduction

Mountain waves are internal gravity waves generated byistra
fied flow over topography. These waves can grow to large am-
plitudes as they propagate upward to great heights in the-atm
sphere, resulting in strong vertical accelerations ancelvaak-

ing. Forecasting mountain waves is thus important for &at
safety and a host of scientific issues, including mixingsdte
stratospheric ozone.

Here we use Fourier synthesized ray solutions to forecaghmo
tain waves in a height dependent background. Ray solu-
tions are first obtained in a Fourier transform domain, where
the wave propagation is governed by one-dimensional height
dependent ray equations. The result is then converted tee-th
dimensional spatial solution by inverse Fourier transform

Previous work with this method (Broutman et al. 2003, Ecker-
mann et al. 2006) treated trapped waves with an Airy function
analysis. This is appropriate for an isolated turning paantd

it predicts the complete reflection of the wave from the tougni
point. If there are two nearby turning points, however, updth

of the wave’s momentum flux can leak through the evanescent
region between the two turning points and continue upwatid wi
the transmitted wave. This process is especially imporiaat
wind jets. It is analagous to tunneling in quantum mechanics
(Brown and Sutherland 2007).

Here we examine two turning-point effects. We introduce a
modified ray solution, which is linearly interpolated ag ke
turning point region where ray theory breaks down. This is
computationally fast, which is important because in pradti
applications of this method thousands of rays can encounter
closely spaced turning points. We compare the modified ray
solution with a uniformly valid solution and a humericalént
gration of the vertical eigenfunction equation. We also fimat
including a wind curvature term in the ray analysis leadsets b

ter agreement with a mesoscale model simulation.

The method

We examine stationary mountain waves propagating in a back-
ground that depends on the heigtanly. The mean wind has
components) (z),V(z) in the horizontak, y directions, respec-
tively. The mean buoyancy frequencyN$z). We work in terms

of the vertical velocityw(x,y,z) and its vertical eigenfunction
W(k,l,z), wherek, | is the horizontal wavenumber vector.

The vertical eigenfunctiow(k,|,z) satisfies (Shutts and Broad
1993)

Wizz+ (15— KG)W =0, @
wherekZ = k? +12, andls is the Scorer parameter defined by
12=N?/U?—-Uz/U. )

HereU (2) is the wind component in the direction of the hori-
zontal wavenumber vectdk, | ).

The spatial solutiomv is obtained fronwby the inverse Fourier
transform

w(x,y,2) = /2o / / W(k,1,2) €Y dkdl, 3)

whereHg ~ 7.5km is the density scale height.

By Fourier synthesized ray solutions, we mean the Fourier sy
thesis (3) of the the ray solutions to (1). These ray solstion
involve phase integrals of the form gxg md2, where the ver-
tical wavenumbem is defined by the dispersion relation

m? = N?/U? — . 4)
The wind curvature ter;;/U in (2) is ignored in the ray ap-
proximation, sincéJ is assumed to be slowly varying over the
vertical distance ofn~1. However, the wind curvature term can
be important for waves with turning points near the tip of advi
jet, as we show below. An anelastic correction to the dispers
relation (4) involvingHp was found to be unimportant in the
examples considered here.

Our notation is such that is postive/negative for upgo-
ing/downgoing wave groups. This is opposite to the usua-not
tion for internal gravity waves, but it is standard for tworting-
point theories developed for other applications and agplere.

Figure 1 illustrates the problem. A wind jet produces an esan
cent region if¥ < 0) between the turning point heights and
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Figure 1: Wind profiles used in the present paper. Left padedecif(z) wind profile. Right panel: The wind profile obtained from
radiosonde measurements and used in Eckermann et al. (Z0@6)vaves have turning points at the have heightndz,, which for
a given background are functions of the horizontal waveremobthe waves.

2, surrounded by propagating regioms?(> 0) above and be-
low. The heights;, > occur wherem? = 0 and depend through
(4) on the horizontal wavenumbektd and the background strat-
ification and wind profiles. An incident wave launched from
z = 0 propagates upward toward the lower turning point at
z= 127y, generating a reflected wave propagating downward be-
low z; and a transmitted wave propagating upward atmve

We first derive solutions faw ih an unbounded region. We then
introduce a lower boundary at= 0, representing the ground,
and account for repeated reflections between the ground and
lower turning point.

The ray solution is derived by Froman and Froman (1970) and
involves the phase integrals

w@ = [‘mdz (5)
(2 = sz dz (6)
Q = [z )

Note that forz < z;, we have from (5) negative; but positive
dgi/dz Thus in the following ray solutions we associatey
with, respectively, upgoing and downgoing wave groupswelo
the lower turning point.

The ray solutions are

W = Cm Y2d@tm4) (8)
W = C|m| Y2l i(@n+m4) (9)
W = CmY2[eRy1)l/2

(@ tT/4+20) (10)

whereC is a constant. The subscrifts,i refer, respectively,

to the transmitted wave (defined far> z,), and the reflected
and incident waves (defined fa< z;). An expression foo is
derived by Froman and Dammert (1970), given by their eq. (57)
as

0=.5[Q"logQ" — Q" +argl (.5-iQ")] (11)

Q/m

whereQ*

The ray solution fow’is
= VT’i + Wy

Wt

z<z
72>27

(12)
13)

The upper boundary condition is a radiation condition szl
by the form chosen fon; which represents an outgoing wave.
Between the two turning points, whemeis imaginary, we use
(Froman and Froman 1965)

W(z) = Clm Y2l

<2< 2. (14)

Uniformly valid solution

The ray solution fowdiverges at a turning point, whems =

0. A uniformly valid solution that corrects the ray singular
ity at two turning points involves Weber functions (related
parabolic cylinder functions). It has the form (Kravtsowdan
Orlov 1999)

W(z) =DA(z)E(b,L(2)), (15)

whereE is the Weber functior is a constant, and
AD) = [([@)-b)/m)), (16)
b = 2Q/m a7)

The mapping{(z) is defined by an integral equation that is
solved iteratively and depends on phase integrals sinailéB)t

(7). Note thatA is proportional tan~1/2, as is the ray solution.
But A remains finite at a turning point, because the two turning
points occur af, = +b. For further details, see Kravtsov and
Orlov (1999).

Eigenfunction approximations for a sech 2(z) wind profile

We first consider the wind profile shown in the left panel of
Figure 1, given by

U

Uo +Usseck((z—zm)?/L?) (18)
with Ug = 10ms ™1, U; = 30ms ™1, z,, = 10km, andL = 3km.

The other background parameters¥dre 0 andN = 0.015s L.

Figure 2 shows the real and imaginary parts of the ray and uni-
form solutions of (1), along with a solution by numericalant
gration (see below). These were computed at 100 evenly dpace
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Figure 2: The real (left panel) and imaginary (right panelitp of the solutionv Tor the wind profile (18). Vertical dotted lines indicate
the turning point locations, & ~ 8.4km andz, ~ 11.6km. The horizontal wavelength of the waves is about 13.8 khe solutions

are normalized so that = —1 atz= 20km.

heights from 0 to 20 km. The ray solution diverges at both-turn
ing points (vertical dashed lines), though the computedesl
remain finite because the discrete grid misses the turniimgpo
slightly. The curve for the uniform solution shows a smaliato
near the turning points, most noticeably in the right paf¢he
figure. These occur because of roundoff error in the calicuat
for A(z) in (16), which is the quotient of two terms that vanish
at the turning points.

The numerical solution to (1) was calculated with a Runge-
Kutta method using an initial condition given by the the &an
mitted ray solution (8) az = 20km. This was then integrated
downward toz= 0. The numerical solution begins to separate
slightly from the uniform solution as the integration preds
down into the evanescent region between the turning pdats.
the real part ofv;the numerical solution is slightly larger in am-
plitude than the uniform solution at heights belaw

The modified ray solution

In practice, mountain wave forecasts involve the calcotatf
W(k,l,z) for tens of thousands &f| values. Thus we would like

to use the ray method, which is much faster than the uniform
and numerical methods. To do so, we need an efficient way to
correct the ray theory breakdown near the two turning points

We first identify the region of ray-theory breakdown near the
turning points using the following quantity (Froman and Fro
man 1965), which measures the slow variation of the vertical
wavenumbem:

1 |3/1dm\? 1 dm

I z(rna) “omdZ (19)
1 dn?\ 2 d2n?

= &F 5(@) —4m2F . (20)

Ray methods are asymptotically valid, i.e. their accurawy i
proves as — 0. At a turning pointe diverges, since neigh-
boring rays with slightly different values ofi cross each other.
This results in a divergence din/dzand the other derivatives
in the above expressions.

We consider ray theory to be sufficiently accurate wherever
1, and we leave the ray solution as it is in those regions. In

a region wheree > 1 we replace the ray solution with linear
interpolated values across that region. etr, z= sbe heights
on either side of a region whege= 1. Our modification to the
ray solution is then given by the linear interpolation

Wi(s) —W(r)

W(r <z<s)—wW(r)+(z— -

r) (21)

We show examples of this modification (indicated by heavy
dashed lines) in Figure 3. The two upper panels are the same
cases as the corresponding panels of Figure 2. The bottom two
panels show results for more closely spaced and more widely
spaced turning points. We approximatedsing centered dif-
ferences for the derivatives of in (20). For the upper panels,

€ > 1 at heights between 6.8 and 9.7 km, and between 10.3 and
13.1 km. The ray solution in these height ranges is replaged b
the linear interpolation in (21).

The upper right panel of Figure 3 shows that occassionadly th
modified ray method is not so accurate. Hereaches a mini-
mum of 0.72 near the middle of the wind jetat 10km, and
yet the ray solution is not accurate there. We expermenttd wi
other values of for determining ray theory validity, but the
value of unity consistently led to the best approximation. A
possible improvement to our procedure would be to intetpola
across the entire evanescent region whenever the two gurnin
points are close together, as judged by the inteQiafl(7) being
less than a certain value, say unity. In this exanm@le 0.64.
We may consider this possibility in future applications.

Lower boundary condition and wave transience

Mountain waves that reflect from a turning point return to the
ground where they reflect upward again. We have not yet taken
into account the contribution from these ground reflectedesa

A way to do so is outlined in the Broutman et al. (2006) and is
summarized here.

Each reflection from the ground generates a new incident,wave
with a phase shift and a change in amplitude relative to tige or
inal incident wave. The phase shift is due to the total phase
change in propagating from the ground to the lower turning
point and then back to the ground again, including the phase
shift of —11/2 for reflection at the turning point and the phase
shift of 1t for reflection at the ground. The total phase shift is
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Figure 3: The modified ray solution, obtained by linear iptéation across the turning point regions and denoted bydisbed line.
Upper panels: the same case as the corresponding panelguire 2. Also shown are examples with closely spaced turngigte
(lower left panel) and widely spaced turning points (lonight panel).



then

Z
m:z/ ‘mdzi 2. 22)
0
The change in amplitude is given by
R= |w|/|wi| = €2/ (€ + 1)Y2. (23)

This reflection coefficient is the ratio of the ray amplitudes
the reflected and incident wave solutions of (9)-(10). As the
distance between the two turning points wide@sincreases
andR approaches unity.

To incorporateN, reflections from the ground, we take the solu-
tions forw obtained above (ray, uniform, numerical) and multi-
ply each by

Ne
S=§5 R, (24)
P

The number of ground reflectioh depends on the propagtion
time T from the ground to the lower turning point and back to
the ground:

z
T:Z/ cgldz
0

wherecy is the vertical group velocity. At timg the number of
ground reflections can be approximated &6 rounded to the

(25)

nearest integer. This approach was tested by Broutman et al.

(2006) and used by Eckermann et al. (2006).

Waves with one or no turning points.

To simulate the full spectrum of mountain waves, we also need
the solution for waves that have one or no turning points. The
solution for one turning point involves the Airy functiont i$
given in the Appendix of Eckermann et al (2006) and will not
be repeated here. The solution for waves without turningtpoi

is

W=Cy|m|"Y/2€9. (26)

whereq = [gmdzandC; is a constant.

There is a better approximation than (26) for waves that just
miss having turning points. It is similar to the two-turnipgint

ray solution (8)-(10), but the turning points have compiesl-
ues. Unlike (26) it accounts for partially reflected and iadlyt
transmitted waves. We are presently implementing thatisolu
and hope to report some results derived from it in the future.

Mountain waves: an idealized case

We first consider a two-dimensional example, with the wind
profile given by (18), and a constaht= 0.015s 1. The to-

pography is

h=ho/(1+x%/L?) 27)
with hp = 100m and_ = 2.5km. The linearized lower boundary
condition is applied. This equategifi (10) tohatz= 0, where
h(k) is the Fourier transform di(x).

The left panel of Figure 4 shows the result obtained using the
modified ray solution. This was calculated on a grid with a
spacing of 1km inx and 100m irz. The dashed lines indicate
the turning point heights for the resonant modes (see below)

The middle panel shows the result from the Weather Research

Skamarock et al. (2005). This was computed on a 480 by 301
grid with a spacing of 250m ix and 100m inz. The WRF
simulation includes a sponge layer that starts-at20 km.

The right panel shows the result calculated the same way as
for the left panel, except that the wind curvature term hanbe
included in the dispersion relation. Thus (4) becomes

M = N?/U? —U,z/U — k2. (28)

Since we are considering a two-dimensional cbse; U.

Including the wind curvature term has led to a better agre¢me
with the WRF solution, particularly at heights in the rande o

about 6- 10km, where the left panel shows higher wave ampli-
tudes than the middle and right panels.

To help explain these results, we consider the resonant snode
These have a phase charyén (22) that is a multiple of &, so
there is perfect constructive interference between theateft
waves. The resonant horizontal wavelengths for the winfilero
(18) are

A~5.0, 7.2, 15.9km. (29)

The corresonding heights of the lower turning point are

7~ 3.9, 6.0, 9.2.km (30)
These heights are indicated by dashed lines in the left pdnel
Figure 4, and in the middle panel to assist in comparing the
results.

The above values were calculated without the wind curvature
term. When wind curvature is included, we find only two reso-
nant modes, with

A~51, 7.5,km (31)

and

7 ~ 3.8, 5.8.km (32)
SinceUz; is negative near the tip of the wind jet, the wind cur-
vature term—U,/U adds a postive contribution ft? and pre-
vents it from vanishing foiA near 16km. Thus we lose the
resonant mode that has a turning poingat- 9.2km and that
results in the relatively large amplitudes in the &0km height
range. These heights in (32) are indicated by dashed lirtbgin
right panel of Figure 4.

Mountain waves: a realistic case

We present some preliminary results for mountain waves gen-
erated by the island of Jan Mayen, in the North Atlantic. This
is for the wind profile shown in right panel of Figure 1, which
has a strong wind jet centered at a height of about 10km. The
stratification profile, the topography, and other detaiésgiven

in Eckermann et al. (2006).

Three solutions forv are presented in Figure 5. The calcula-
tions are three-dimensional, but only the vertical crostices

are shown here. The left panel is the solution based on aesingl
turning-point theory involving Airy functions. This is trsolu-
tion given in Eckermann et al. (2006). It reveals very littlave
transmission above the 10km wind jet.

The right panel of Figure 5 is from our modified ray solution.
The wavefield above the wind jet is much stronger than in the
left panel, and compares fairly well in magnitude with the R

and Forecasting (WRF) model, a mesoscale model described by solution, pictured in the middle panel. However, the domina
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Figure 5: Mountain waves generated by Jan Mayen, in verticas section. Left: Airy function solution accounting foisingle

turning point only, as computed by Eckermann et al. (2006)dd\¢: WRF solution. Right panel: modified ray solution. Griar
values are fow in ms™1.
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horizontal wavelength above the wind jet is somewhat shorte
for the modified ray solution than for the WRF simulation. We
have not yet included the effects of wind curvature in this ca

culation, which may be the source of this discrepancy.

Comments

We have demonstrated that Fourier synthesized ray sotution
can effectively model mountain waves in the presense of two
turning points caused by a wind jet. We dealt with the break-
down of ray theory near the turning points by linearly interp
lating the ray solution across the turning point regionsllas-
trated in Figure 3. We tested the accuracy of this modified ray
approach by comparing its predictions with a uniformly dali
theory and a numerical integration of the vertical eigenfun
tion equation, both of which require much longer computatio
times.

The results can be sensitive to the effects of wind curvature
the dispersion relation, especially if a resonant mode hasha
ing point near the tip of a wind jet (see Figure 4).
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